

1

Is Calling

Your code
Other Method

Exception Handling

No matter how good programmer we are, we cannot control the flow of execution of the

program. There might be possibility of abnormal termination of program at runtime due to

several reasons like, coding error, system error, absence of code to which we are calling, reading

a file which doesn’t exist etc.

Such unwanted, un-avoided and unexpected situations are called as Exceptions. Exceptions can

terminate the normal execution of the program. Hence it is highly recommended to use

Exception Handling.

 Exception Handling makes sure that your program terminates NORMALLY.

 Exception Handling doesn’t guarantees the repair of exception, but it can continue the

normal execution of the program.

 In Exception Handling we can make a decision what to do, when an exception occurs.

 Let’s say your code is calling a method that you didn’t write.

 In this example, your code will terminate abnormally because otherMethod() is having a

risky code.

 In this case, to avoid abnormal execution of myMethod(), we have to handle exception.

 Exceptions can be handled using:

1. try-catch block

2. thorws keyword

 To understand exception clearly, let’s discuss the Runtime Stack Mechanism.

Runtime Stack Mechanism:

 For every thread, JVM creates a stack in which methods will be stored. (main method can

be an example of thread)

public class MyClass{

 public void myMethod(){

 otherMethod();

 }

}

public class OtherClass{

 public void othrMethod(){

 a=a/0;

 }

}

2

 All the methods which are called by thread will be saved on stack.

 After executing the method, JVM deletes its entry from stack.

 After successfully executing all the methods, JVM destroys stack and then terminates the

thread.

 Example:

public class TestStack{

 public static void main(String[] args){

 methodA();

 }

 Public void methodA(){

 methodB();

 }

 public void methodB(){

 methodC();

}

Public void methodC(){

}

}

 Here, main() is calling methodA(), methodA() is calling methodB(), methodB() is

calling methodC().

 So stack will become:

methodA()

main()

 Once methods are executed, they are deleted from stack. And at last stack is deleted and

thread is terminated.

methodC()

methodB()

methodA()

main()

main()

methodB()

methodA()

main()

 Step-1 Step-2 Step-3 Step-4

3

Throwable

Error

Assertion Error VMError

OutofMemoryError

StackOverflowError

Exception

Checked Exception

IOException

SQLException

Unchecked Exception

RuntimeException

ArithmeticException

NullPointerException

Exception Hierarchy:

 Throwable class in Java acts as parent of entire exception hierarchy.

 It has two child classes viz:

1. Error

2. Exception

 Exceptions are caused by programmers most of the time and they are recoverable.

 Errors are caused by system and they are not recoverable.

 There are two types of Exception:

1. Checked Exception

2. Unchecked Exception

4

1. Checked Exception:

 Exceptions that are not subclass of RuntimeException are called as checked exception

 Checked exceptions are checked by compiler.

2. Unchecked Exception:

 RuntimeExceptions are unchecked exceptions.

 They are not checked by compiler.

Exception Handling using try-catch block:

 try block includes a code which may cause exception

 catch block includes a handling code if exception occurs in try block.

 Example:

public class ExceptionDemo{

 public static void main(String[] args){

 try{

 “Risky Code”

}catch(Exception e){

“Handling Code”

}

 }

}

Control Flow in try-catch block

Public class ExceptionDemo{

 Public static void main(String[] args){

 try{

 statement_1

 statement_2

 statement_3

 }catch(Exception e){

 Statement_4

 }

Statement_5

 }//End of main method

 }//End of class

5

 Case_1: If there is no exception, then statements 1,2,3,5 will execute

 Case_2: If exception occurs at statement 2 and catch block matches, then statement 1,4,5 will

execute

 Case_3: If exception occurs at statement 2 and catch block DOESN’T matches, then program

will terminate abnormally.

 Case_4: If exception occurs at statement 4 or 5, program will terminate abnormally.

 If exception occurs at some statement in try block, then next statement will not be executed

and program control will be transferred to catch block.

 Hence while writing program, risky code should be the last line of try block strictly.

 Length of try block should be as less as possible. Probably a single line which may cause

exception.

try-block with multiple catch-blocks:

 It is possible to have multiple catch blocks to a single try-block.

 Each and every exception can be handled in different ways.

 Hence it is recommended to write multiple catch-blocks for single try-block.

 Example:

try{

 statement_1

}catch(ArrayIndexOutofBoundException ai){

}catch(IndexOutofBound ib){

}catch(Exception e){

}

 While writing multiple catch-blocks to single try-block we have to be very careful about

the order of catch blocks.

 The catch block with very specific exception should come first and then generic one

should come next.

 Above sequence of catch-blocks is allowed because, first catch has child exception

class(ArrayIndexOutofBoundException), then next catch have its

parent(IndexOutofBound) and then next catch have it’s grand-parent (Exception)

 But reverse is not possible. Paren->child->Grand-child this order will give compile time

error. Whereas child->parent->Grand-parent will work fine.

6

Finally Block:

 If we want to write a code which will perform clean-up activity, like closing file,

closing database connection, closing Session etc., we cannot write such code inside

try-block. Because if exception occurs there is chance of not executing the clean-up

code.

 If we write clean-up code inside catch-block and if exception doesn’t occur, then

clean-up code will not execute.

 Hence we require something which will execute for sure regardless of exception.

 And that thing is nothing but a ‘finally’ block.

 Finally block is written after all the catch blocks.

 It will execute for sure even exception occurs or doesn’t occurs.

 Finally block is used to write clean-up code.

 finally block dominates return statement. Even if return statement is present in try or

catch block, still finally block will execute.

 There is only one situation where finally block will not execute: When we write

System.exit(0) in try block or when ever JVM shuts down.

 try{

 “Risky Code”

 }

catch(Exception e){

 “Handling code”

}

finally{

 “Clean-up code”

}

7

Control flow with Finally Block:

If exception occurs If exception doesn’t occurs
try{
 S.o.pln(“Statement_1”);
 a=10/0; //DivideByZeroException

}
catch(Exception e){
 S.o.pln(“Statement_2”);
}
finally{
 S.o.pln(“Clean-up Code”);
}

try{
 S.o.pln(“Statement_1”);
 a=10/5;

}
catch(Exception e){
 S.o.pln(“Statement_2”);
}
finally{
 S.o.pln(“Clean-up Code”);
}

Output: Statement_1
 Statement_2
 Clean-up Code

Output: Statement_1
 Clean-up Code

Printing Exception Information

 There are three methods available to print exception information.

1. printStackTrace()

 This method prints the exception information in following format:
Name of Exception: Description: Stack Trace

2. toString():

 This method prints the exception information in following format.

Name of Exception: Description

3. getMessage():

 This method prints the exception information in following format.

Description.

8

Your code Other Method

Throws Keyword:

 We have seen how to handle exceptions using try-catch blocks.

 But sometimes we don’t take responsibility to handle exception in our own method.

 In such cases, if some other method calls our method, the caller method will get exception

because of our method.

 Hence it is recommended to handle exception using try-catch block or to ‘Propagate’ exception to

caller method, so that caller method will have prior-knowledge that the method I am calling may

throw an exception.

 Let’s say that you have borrowed a bike from your friend. And the bike may stop at any time due

to engine exhaust. And if your friend doesn’t inform you about this, you may not handle the

situation.

 If you have prior knowledge of such exception, you can take necessary prevention steps.

 In same way, if a caller method has prior knowledge of calling a RISKY method, he may handle

the exception at his end effectively.

 Hence to intimate caller method about exception we should write throws keyword followed by

list of exceptions that a method may throw.

 Eg.

Public void othersMethod() throws ArrayIndexOutofBoundException,

ArithmeticException{

}
 In below diagram, myMethod() will have prior knowledge about exception that may cause in

otherMethod().

 Hence we can summarize throws as: throws is used to propagate exception to the caller method.

And we don’t take responsibility to handle exception.

public class MyClass{

 public void myMethod(){

 otherMethod();

 }

}

public class OtherClass{

 public void othrMethod() throws Exception{

 a=a/0;

 }

}

9

Throw Keyword:

 So far, we were only catching exceptions that are thrown by the Java run-time system.

 However it is possible for our program to throw an exception.

 throw keyword is used to throw exception explicitly.
 If we write throw keyword inside our method, our method will throw exception explicitly even if

it doesn’t occurs.

 Eg.

Public void myMethod(){

throw new ArithmeticException();

}

 In above given example, myMethod() will thorw ArithmeticException explicitly.

 After throw statement we are not allowed to write any statement. If we try to write any statement

after throw statement, we will get compile time error.

 Throw keyword is also used to throw customized exception mentioned below.

Creating your own Exception:
 Java has provided several exception classes for different exceptions.

 But some projects have requirement to create customized exceptions.

 Eg. NotEnoughBalanceException.

 Hence java has provided a facility to programmers that they can create their own exception.

 To create our own exception, we just has to create a class with customized exception name and

extend the class with Exceptions class or Throwable class.

 Eg.

Public class NotEnoughBalanceException extends Exception

OR

Public class NotEnoughBalanceException extends Exception

10

-:Interview Questions:-

1. What is Exception in Java?

2. What is difference between Checked and Unchecked Exception?

3. What is difference between ClassNotFoundException and

NoClassDefFoundException?

4. Can we write multiple catch blocks to single try block?

5. Is it necessary to have catch block for every try block?

6. Can we write try block inside try block?

7. Can we write try block inside catch block?

8. What is the difference between final, finally and finalize?

9. How to create your own exception?

