

OOPs Concepts

1. Data Hiding

2. Encapsulation

3. Abstraction

4. Is-A Relationship

5. Method Signature

6. Polymorphism

7. Constructors

8. Type Casting

Let us discuss them in detail:

1. Data Hiding:

 Every Java project has following structure.

 Data can reside in either class or methods.

 We can hide data in class or method from other classes and methods of a same project

or other project.

 Hiding of data can be on project level, package level or class level. If package level

hiding is applied, then no other package in same project or different project can

access the data.

 Data hiding is achieved using Access modifiers.

 There are four access modifiers: private, protected, public and default.

 Private:

i. If we declare any member of a class as private then no one can access

them outside of the class in which they are declared and defined.

Project

Package_1

Class_1

Method_1

Method_12

Class_2

Method_21

Method_22

Package_2

Class_21

Method_21

Method_22

Class_22

Package_n

Class_n

Method_n1

Method_n2

ii. Private members are accessible with class only.

iii. We can apply private modifiers to variables, methods and constructors

only.

iv. Ex. (Refer above diagram) If I declare method_1as private then it will only

be visible to objects of class_1.

 Public:

i. If we declare any member of a class as public then they will become

accessible to everyone in project and outside project as well.

ii. We can apply public modifiers to variables, methods, constructors and

classes.

 Default:

i. Default members are accessible inside package only in which they are

declared and defined.

ii. Ex. If we make method_1 as default, then object of class_21 cannot access

it as class_21 is in different package. Whereas it will be accessible to

object of class_2

iii. We can apply default modifier to variables, methods, constructors and

classes

 Protected:

i. Protected members are accessible to child and grandchildren of the current

class.

ii. Ex. If we make method_1 as protected and class_2 as child of class_1 then

only class_2 can access method_1.

iii. We can apply protected modifier to variables, methods, constructors.

2. Abstraction:

 Hiding background implementation of the services is abstraction.

 Let say we want to build an application for e-commerce. Then we cannot disclose our

business information to everyone. We would just disclose set of services we may

offer but not the procedure of how we will offer the services.

 Greatest example of abstraction would be a bank ATM machine, which displays

different services an ATM can offer. But it doesn’t allow you to view the background

implementation of the services.

 By using abstraction we can maintain security and confidentiality among our

business.

 We can achieve abstraction by means of Abstract classes and Interfaces.

Sr.

No

Abstract Class Interface

1
Abstract class is used to achieve 0

to 100% abstraction

Interface is used to achieve 100%

abstraction

2

Every method of abstract class

should be public and abstract. But

concrete methods are also

allowed

Compulsorily every method in

interface should be public and

abstract

3

We can use any modifiers for the

abstract class methods

We can use only private, protected,

static, final and synchronized

modifiers for the interface methods.

4
Abstract class variables need not

be public ,static and final

Every variable inside interface are

by default public, static and final.

5

It is not compulsory to initialize

abstract class variables

We should compulsorily initialize

variables

in interface

6
Inside abstract class we can

define instance and static blocks

Inside interface we cannot define

instance and static blocks

7
Inside abstract class we can take

constructor

Inside interface we cannot define

constructor

3. Encapsulation:

 Binding data and methods into a single entity is called as Encapsulation.

 A Class can be a example of encapsulation.

 An encapsulated class may uses Data Hiding and Abstraction both.

 Using encapsulation we can achieve security and modularity.

 Encapsulation allows organizing data and methods.

4. Is-A Relationship (Inheritance):

 This is also known as inheritance.

 Using Is-A Relationship we can transfer data and methods of parent class to child

class but reverse is not possible.

 We can achieve inheritance using ‘extends’ keyword.

 Ex. public class Parent {
 char ch = 'A';

 public void display() {

 }

 }

 public class Child extends Parent{
 public static void main(String[] args) {
 Child c=new Child();
 c.display(); //method of Parent class.
 }

 }

Types of Inheritance in Java:

There are four types of inheritance.

I. Single Inheritance

II. Multi-level inheritance

III. Multiple inheritance

IV. Hierarchical Inheritance

V. Hybrid Inheritance

Let us discuss them in detail.

I. Single Inheritance:

 When there is only one parent and one child, then it is called as single inheritance.

 Ex. public class B extends A.

 Here A is parent and B is child

 All methods and variables (instance and static) of class A will be accessible to the

object of Class B except those are private.

 A

B

II. Multi-level Inheritance:

 When there is Grand Parent, Parent, Child and Grand Child hierarchy, it is called as

multi-level inheritance.

 Ex. public class B extends A

public class C extends B

 In above example A is grand parent of C and parent of B.

 Class C object will have access to all features of Class A, Class B and its own.

 Class B object will have access to all features of Class A and its own.

 Class A object will have access to its own features only as parent cannot extend

properties of child.

III. Multiple Inheritance:

 Multiple inheritance means, single child multiple parents.

 Multiple Inheritance is not allowed in Java.

 Still we can achieve Multiple Inheritance using Interfaces.

 Ex. public class A extends B, C //Not allowed

 Public interface I1 implements I2, I3, I4 //Allowed

A

B

C

B C

A

IV. Hierarchical Inheritance:

 Hierarchical inheritance creates tree structure of Parent child relationship.

 There is only one root parent and multiple leaf children possible.

 Ex. public class A

 public class B extends A

 public class C extends A

 public class D extends B

 public class E extends B

 Above statements are represented using diagram given below.

5. Method Signature:

 Method Signature consists of method name and list of parameters.

 Ex. m1(int a, int b);

 Return type is not a part of signature.

 Compiler uses method signature to resolve method call.

 In same class two methods with same signature is not allowed.

6. Polymorphism:

 Polymorphism- ‘Poly’ means many, ‘morphism’ means forms.

 We can achieve polymorphism using method overloading and overriding.

A

B C

D E

 Method overloading is compile time or static.

 Method overriding is runtime or dynamic.

I. Method Overloading:

 Overloaded methods should be in same class

 Overloaded methods have same name but different list of arguments.

 Ex. public class Demo{

 public void add(int a, int b){

 }

 Public void add(char a, char b){

 }

 In above example ‘add()’ method is overloaded method.

 Type Promotion in Method Overloading:

 In method overloading, if methods with specified list of arguments is not found,

then compiler will not through any error immediately. Instead it will promote the

argument(Data Type of argument) to next level and checks for the match

 If list of parameter matches then the method will be executed else it will again

promote the data type.

 This process will continue until all possible promotions are checked.

 If no matching method found, Compile Time Exception will be thrown.

 This is called automatic type promotion.

 Allowed Type promotions.

 Below program illustrates the same.

byte

char

short

byte byte byte byte

public class Test {
 public void add(int a, int b) {
 System.out.println("Add itegers");

 }
 public void add(float a, float b) {
 System.out.println("Add floats");

 }
 private void add(short a, short b) {
 System.out.println("Add shorts");

 }
 public static void main(String[] args) {
 Test test=new Test();
 byte a=5;
 byte b=10;
 test.add(a, b);
 }
}

II. Method Overriding:

 Overridden methods must be in different class.

 Classes in which overridden methods are declared should possess parent-child

relationship compulsorily.

 Name and list of parameters of overridden methods should be same.

 In overriding, return type also should be same. This rule is valid till Java V1.4. Since

Java 1.5 we can mention different return type for overridden methods provided return

type of child method should be child of Parent method’s return type.

 Ex.

public class Parent {
 public Object add() {
 return null;
 }
}

public class Child {

 public String add() {
 return null;
 }

 In above example return type of add() method of Child class is String which is child

of Object. Hence we can write return type of add method of Parent class as Object.

But reverse is not possible.

 This is called Co-variant return types.

 Only objects are allowed as Co-variant return types but not primitive data types.

 We cannot override final method

 We can mention static modifier to overridden methods but it is not overriding. It is

called as ‘Method Hiding’.

 We can mention private access modifier to overridden methods, but it will not be

considered as overriding. Those methods will be treated differently at run-time.

Property Overloading Overriding

Method name Must be Same Must be same

List of arguments Must be different (at least

order)

Must be same

Method signature No restriction Must be same until Java1.4.

But since 1.5 Co-variant return

types are allowed

Private, static and

final methods

Can be overloaded Can’t be overridden.

Access modifiers No restriction We can’t decrease the scope.

 Parent-Public and Child-

Default not allowed.

 Parent-Default and Child-

Public is allowed

Level of

polymorphism

Compile time polymorphism Runtime Polymorphism.

Checks We should only check method

name(must be same) and list

of arguments (must be

different)

All should be checked, like

return type, access modifier,

name, list of arguments.

7. Constructor:

 Constructor is a special type of method which is used to initialize an object.

 Java allows objects to initialize themselves when they are created.

 This automatic initialization is performed through the use of a constructor.

 Constructor is a special type of method which doesn’t have return type. Explicitly its

return type is ‘Class’.

 If we by mistake provide return type to constructor then compiler will not give any

error because it will treat it as a method.

 Constructor’s name is exactly same as the class name in which it resides.

 Allowed Modifiers: public, private, protected, default.

 Final static not allowed.

 First line inside constructor is always super(). It calls super class’s default

constructor.

 Two types of constructors: Default and Parameterized.

 Default Constructor:

 If we are not providing any constructor, then compiler will automatically generate

default constructor.

 If we are writing at least one constructor then compiler will not provide default

constructor.

 Class can contain programmer defined constructor or a parameterized constructor

but not both.

Programmers code Compiler’s code

class Test{

}

class Test{

 Test(){

 super();

 }

}

public class Test{

}

public class Test{

 public Test(){

 super();

 }

}

class Test{

 int Test(){

 }// Not a constructor

}

class Test{

 Test(){

 super()

 }

 int Test(){

 }

 Super and this keywords:

 Using ‘this’ keyword we can access anything of current class

 Using ‘super’ keyword we can access anything of Parent class.

 We can use these keywords anywhere except in static methods or blocks.

 We can write more than one constructor with same name in one class. It is called

as ‘Constructor Overloading’.

 We cannot override constructors.

8. Type-Casting:

 If we assign int value to a long variable, then Java will automatically convert int to

long as int child and long is parent. But reverse will not be possible

 Parent class reference can be used to hold child class’s object.

 Ex. Parent p=new Child();

 Similarly interface reference can be used to hold implementation class’s object.

 But if there are certain situations where we need to convert parent into child. Ex. If

we want to assign long value to an int variable, then we can do this by Type Casting.

 Syntax: (target-type)value;

 Type-Casting allows parent to convert into child.

 Ex.

 int i=10;

 long l=i; //This is possible

 long l=10;

 int i=l; //This is not possible. Possible only using

Type-Casting

 int i=(int)l; //Using Type-Casting

 Similarly we can convert float into int using type casting but there is chance of loss of

fractional value.

 Ex.

 float f=10.23f;

 int i=(int)f; //Here I will contain 10. .23 is truncated

